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Abstract

We consider a general class of branching methods with killing for the estima-
tion of rare events. The class includes a number of existing schemes, including
RESTART and DPR. A method for the design and analysis is developed when
the quantity of interest can be embedded in a sequence whose limit is deter-
mined by a large deviation principle. A notion of subsolution for the related
calculus of variations problem is introduced, and two main results are proved.
One is that the number of particles and the total work scales subexponetially
in the large deviation parameter when the branching process is constructed ac-
cording to a subsolution. The second is that the asymptotic performance of the
schemes as measured by the variance of the estimate can be characterized in
terms of the subsolution. Examples are given, and methods that use killing are
compared with the analogous schemes without killing.

1 Introduction

The need to calculate the probabilities of rare events arises in many fields, for ex-
ample operations research, engineering, physics and chemistry to name just a few.
By a rare event, we mean one whose probability obeys a large deviations rule (see
[10, 15]), and in particular that the probability is one of a sequence of probabilities
pn such that for some γ > 0

lim
n→∞−1

n
log pn = γ.
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Often it is necessary to estimate these probabilities numerically and there is much
interest in developing accurate and efficient Monte Carlo algorithms to do this.

In Monte Carlo one simulates K independent and identically distributed (iid)
copies of a random variable ŝn whose mean is pn, and then estimates pn by the
sample mean. Since the variance of the estimate is K−1 times the variance of a
single sample, performance can be measured in terms of the variance of ŝn, and since
E[ŝn] = pn it follows that minimizing the variance is equivalent to minimizing the
second moment. A standard measure of performance for rare event simulation is
the asymptotic relative error limn→∞

[
log E

[
(ŝn)2

]
/ logpn

]
. However this measure

ignores the computational cost of the algorithm, a cost that can become significant in
some circumstances, e.g., for a poorly designed splitting algorithm. For our purposes
a more suitable measure of performance is the asymptotic work-normalised relative
error

lim
n→∞

1
n

log
E
[
(ŝn)2

]
E [wn]

p2
n

,

where wn denotes the computational cost of generating a single sample of the nth

estimator. This measure is essentially the same as the asymptotic work-normalised
error proposed by Glasserman et. al. in [19].

For typical problems of rare event estimation (e.g., hitting probabilities), the
work required by naive Monte Carlo grows subexponentially, and a straightforward
calculation shows that the asymptotic work-normalised relative error is equal to
the large deviations rate γ. Hence the ratio of the work-normalised variance to
the square of the probability being estimated grows exponentially in n. It follows
that an enormous number of samples is required for the standard deviation of the
resulting estimator to be sufficiently small, and so alternative Monte Carlo methods
are sought. By Jensen’s inequality the asymptotic work-normalised relative error is
always greater than or equal to zero. The aim is thus to find an alternative Monte
Carlo method such that this value is as close to zero as possible. A Monte Carlo
method that achieves the value zero is said to be asymptotically optimal.

The two most common alternative Monte Carlo methods in the context of rare
event estimation are importance sampling and multi-level splitting. For an overview
of the field of rare event simulation see [1]. The present paper is concerned with
the design and analysis of a particular multi-level splitting method called the Direct
Probability Redistribution (DPR) algorithm [20, 21], which is a generalization of
the RESTART (REpetitive Simulation Trials After Reaching Thresholds) algorithm
[2].

Multi-level splitting algorithms are often used simulate probabilities of the form
P {X ∈ A}, where X = {Xi, i = 0, . . .} is a discrete time stochastic process and A
is some subset of the path space D. (Splitting for continuous time processes will
not be considered in this paper.) The multi-level splitting philosophy is to simulate
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particles that evolve according to the law of {Xi}, and at certain times split those
particles considered more likely to lead to a trajectory that belongs to the set A. For
example, A might be the trajectories which reach some unlikely set B before hitting
a likely set A, after starting in neither A nor B. In this case, the splitting will favor
migration towards B. Particles which are split are given an appropriate weighting to
ensure that the algorithm remains unbiased. Broadly speaking there are two types
of multi-level splitting algorithm, those with and without killing, where stopping
is distinguished from killing. In the example just mentioned particles are stopped
upon entry into either A or B. Killing involves abandoning a particle prior to entry
into either A or B, presumably because continuation of the trajectory is not worth
the computational effort. Care must be taken that any killing will not introduce
bias.

To the authors’ knowledge there is only one type of multi-level splitting algo-
rithm without killing - the splitting algorithm (see [19] for further references). The
standard implementation of this algorithm requires a sequence of sets C1 ⊃ · · · ⊃ CJ ,
called splitting thresholds, and a sequence of positive integers R1, . . . , RJ, called split-
ting rates. A single particle is started at the initial position X0 and evolves according
to the law of {Xi}. When a particle enters a set Cj for the first time it produces
Rj − 1 offspring. After splitting has occurred all particles evolve independently
of each other. Each particle is stopped according to the stopping rule associated
with {Xi} and the algorithm terminates when all the particles generated have been
stopped. The probability of interest is approximated by N/

∏J
i=1 Ri, where N is

the number of particles simulated whose trajectories belong to A. A more general
version of this algorithm lets the splitting rates Ri take non-negative real values, in
which case the number of offspring is randomized.

Although the splitting algorithm can be very effective there is one clear source
of inefficiency when dealing with rare events. The vast majority of the particles
generated will not have trajectories that belong to the set A, and so much of the
computational effort is devoted to generating trajectories that do not make any
direct contribution. Multi-level splitting algorithms with killing were introduced
as a way to mitigate this problem. The first such algorithm was the RESTART
algorithm, introduced in [2] and [3]. Its implementation is identical to the standard
splitting algorithm except that particles are split every time they enter a splitting
threshold and particles are killed when they exit the splitting threshold in which
they were born. The initial particle is assumed to be born in the set C0, which by
convention is equal to the state space of the process {Xi}, and so this particle is
never killed.

The standard version of the RESTART algorithm requires that the splitting rates
be integer valued and that the process not upcross more than one splitting threshold
in each time step. The DPR algorithm, introduced in [20] and [21], generalises this.
Although in motivation it differs, in implementation it is identical to the RESTART
algorithm except that the above restrictions are lifted. Because the DPR algorithm
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is a generalisation of the RESTART algorithm the discussion in the rest of the paper
focuses on the DPR algorithm.

At present RESTART and DPR algorithms have been applied to the estimation
of hitting and stationary probabilities of stochastic processes [3, 5, 21]. In [4] a
formula is obtained for the variance of the RESTART algorithm, but to date no
analogous expressions have been obtained for the DPR algorithm. Further there
does not exist any systematic and rigorous framework for the design and analysis
(bounds on the asymptotic work-normalised relative error) for RESTART or DPR
algorithms.

The purpose of this paper is to extend the framework for designing and analysing
splitting algorithms for rare event simulation as presented in [9] to the case of DPR.
This framework uses subsolutions to a Hamilton-Jacobi-Bellman (HJB) partial dif-
ferential equation (PDE) naturally associated with the probability via a large de-
viations analysis. A practical advantage of the approach is that for an interesting
and growing class of problems one can find appropriate subsolutions to the HJB
equation that generate asymptotically optimal splitting algorithms. The work in [9]
is itself an extension of the results presented in [13], which focus on algorithms based
on importance sampling for rare event estimation. There is, however, an important
distinction in the types of subsolution required for splitting type schemes and im-
portance sampling. For importance sampling, one needs functions that are either
classical sense subsolutions, or more generally the minimum of a finite collection
of functions which satisfy the equation in a classical sense at all points where the
gradient is defined. In contrast, splitting type schemes require only a subsolution in
the viscosity sense.

The main results in this paper are as follows. In Section 3 a generalised DPR
(GDPR) algorithm is defined for estimating expected values of the form

E

[
τ∑

i=0

f(Xi)

]
, (1.1)

rather than just hitting and stationary probabilities. Standing assumptions which
will be in force throughout this paper are that τ is the (a.s. finite) time of first entry
into some closed set M , and f(x) is a non-negative measurable function. In Section
4 a specific and natural implementation of the GDPR algorithm is proposed and
formulae for the computational cost and second moment of the GDPR algorithm
are derived.

Sections 5 and 6 consider the asymptotic problem. In Section 5 a method for
designing GDPR algorithms based on the subsolution framework in [9] is developed.
Expressions for the asymptotic work-normalised relative error of such algorithms
are derived using the formulae developed in the previous section, and subsolutions
which lead to asymptotically optimal performance are identified. Section 6 describes
a PDE based method for characterizing subsolutions which is simpler to use in
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practice. The last three sections are devoted to numerical results and a comparison
with ordinary splitting, some short conclusions and an appendix containing proofs
that were deferred from the body of the paper.

2 Notation and Terminology

Some conventions are as follows. The letter i exclusively denotes a discrete time
variable. Random processes are denoted using capitals, e.g., {Xi, i = 0, . . .}, with
Xi the state of the process at time i. For simplicity it is assumed that X0 = x0 is
deterministic, though all results can easily be generalized to the case when this is
no longer true. The letter D is used to denote the state space of a random process,
D to denote the corresponding path space, and δx to denote the standard Dirac
probability measure at x. It is assumed that D ⊂ R

d for some d. Although we
will later consider processes {Xi, i = 0, . . .} as elements of a sequence that satisfies
a large deviation property, for notational simplicity the large deviation index is
initially suppressed.

The stationary measure of {Xi} [assuming one exists] is denoted by π, and the
induced measure on the state space at time i is denoted πi(dx). Thus for A ⊂ D

πi(A) = Ex0 [1A (Xi)] .

The following non-standard notation is also used. Branching processes are de-
noted with overbars, e.g.,

{
X̄i, i = 0, . . .

}
. Each branching process has a Z+-valued

process Ni, i = 0, . . . associated with it, where Ni equals the number of particles
present in the branching process at time i. For each i = 0, . . . and j = 1, . . . , Ni,
X̄i,j denotes the state of the jth-particle at time i, and (X̄0,j, . . . , X̄i,j) denotes the
path history of the jth-particle at time i. By convention a particle created by split-
ting inherits the parent particle’s path history. We also define a pair of measures
relevant to branching processes by

π̄i(A) .= Ex0


 Ni∑

j=1

1A

(
X̄i,j

) and δ̄X̄i

.=
Ni∑
j=1

δX̄i,j
.

Note that these are typically not probability measures. The first is referred to
as un-normalized induced measure and the second as an un-normalized empirical
measure.

Recall that multi-level splitting algorithms are defined via sequences of nested
sets C1 ⊃ · · · ⊃ CJ and splitting rates R1, . . . , RJ. By convention C0 is equal to
D, CJ+1 = ∅, and R0 = 1. Defining algorithms through levels and rates quickly
becomes notationally cumbersome. In addition, it is not well suited to the analysis
of a sequence of problems indexed by a large deviation parameter. In this paper
“importance functions” will be used to identify the algorithm data. An importance
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function is a non-negative step function V (x) such that there is a sequence of sets
C̃1 ⊃ · · · ⊃ C̃J̃ , with the property that V (x) is constant on each C̃j/C̃j+1, V (x) >

V (y) for all x ∈ C̃j, y ∈ C̃c
j and V (x) = 0 for all x ∈ C̃c

1. For a given importance
function it is convenient to use the notation C̃0 = C̃c

1 and to let Vj, j = 1, . . . , J̃
denote the value taken by the importance function on the set C̃j/C̃j+1. As we will see
later on, it is possible to obtain a collection of importance functions corresponding to
a collection of values of the large deviation index from a single “generating” function
in a convenient manner.

Each importance function V (x) naturally defines a sequence of splitting thresh-
olds and splitting rates by J = J̃ and Cj = C̃j , Rj = exp(Vj−Vj−1) for j = 1, . . . , J.
By convention exp(V0 − V−1) = 1. Conversely, given a sequence of splitting thresh-
olds and splitting rates one can define the related importance function by

V (x) .= max
j:x∈Cj

{
log

(
j∏

k=0

Rk

)}
.

Hence there is a one-to-one correspondence between importance functions and se-
quences of splitting thresholds and splitting rates, and so there is no loss of generality
in using importance functions to define multi-level splitting schemes. Given V (x)
and x ∈ D let ρ(x) be the unique integer j such that x ∈ Cj/Cj+1.

The term Monte Carlo (DPR, GDPR, etc.) algorithm will be used to refer to a
single Monte Carlo algorithm and the term Monte Carlo (DPR, GDPR, etc.) scheme
will be used to refer a sequence of Monte Carlo (DPR, GDPR, etc.) algorithms used
to estimate a sequence of probabilities or expected values.

Finally some terminology is needed to concisely describe how offspring are gener-
ated when a particle splits. For the RESTART algorithm this is simple. Every time
a particle enters a splitting threshold Cj , a deterministic number of offspring Rj −1
are generated. Since particles are destroyed when they exit the splitting threshold
in which they are born, each particle has an integer attached to it to record this
splitting threshold. These are referred to as the support thresholds of the particles.
For DPR and GDPR the number of particles can be random, and since particles can
jump more than one level in a single step, the construction of an unbiased algorithm
requires that the support threshold also be randomized.

Let S be the elements q ∈ Z∞
+ such that qj = 0 for all sufficiently large j. Vectors

q ∈ S will be referred to as splitting vectors, and the term splitting distribution will
mean a probability measure Q on S. The splitting process can then be described
by randomly assigning to each particle that splits a vector q ∈ S. The number of
new particles will be equal to

∑∞
j=0 qj , and precisely qj of the new particles will be

given support threshold j. The distribution of this random vector will depend on
the parent particle’s current and immediately prior thresholds.

Although this notation is more complicated than necessary in the context of
RESTART, it proves to be very useful for describing the DPR and GDPR algorithms.
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Consider the DPR algorithm. If a particle moves from Cj/Cj+1 to Ck/Ck+1, k > j,
then splitting occurs. All offspring and the parent are located in Ck/Ck+1, and the
support threshold of each new particle is an element of {j + 1, . . . , k}. Numbers
of offspring and their support thresholds are independent of all past data except
through the values of j and k. It follows that each DPR algorithm will induce a
splitting distribution on the set S for each pair 1 ≤ j < k ≤ J. Conversely, any
collection of splitting distributions Qj,k, 1 ≤ j < k ≤ J will define how particles
are split for a particular DPR algorithm. Such collections provide a concise way of
describing the splitting mechanisms of a given DPR algorithm, and will used in the
next section to describe how particles in the GDPR algorithm should be split.

3 The GDPR Algorithm

For the rest of this paper the following condition will hold.

Condition 3.1 f ≥ 0 and τ is almost surely finite.

The DPR algorithm can be motivated as follows. Suppose a process {Xi} with
state space D has stationary measure π, and that for some set A, π(A) is so small
that estimating π(A) using standard Monte Carlo techniques is impractical. Suppose
further that for an importance function V (x) one could simulate a process X̂ =
{X̂i, i = 0, . . .} taking values in the same state space with stationary measure

π̂(B) =
∫

B
eV (x)π(dx)

/∫
D

eV (x)π(dx).

One could then approximate π(A) by approximating∫
A

e−V (x)π̂(dx)
/∫

D
e−V (x)π̂(dx)

via simulation.
Following the standard logic of acceleration methods generally, the hope is that

with a well chosen importance function V (x) the variance of the estimator using X̂ is
made lower than that of the original estimator by building in information regarding
the underlying process and the event of interest. The DPR method essentially follows
this approach, except that a branching process is used rather than an ordinary
Markov process, and the amplification factor exp(V (x)) which multiplies π(dx) is
produced by the branching (see [21, Figure 4]). The essential points are:

• A birth-death branching process X̄ =
{
X̄i, i = 0, . . . , T

}
is simulated by split-

ting the original process.

• Given an importance function V (x) the process X̄ has un-normalized induced
measure π̄i(dx) = exp(V (x))πi(dx).
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• π(A) is then approximated by

1
T

T∑
i=0

∫
D

1A (x) e−V (x)δ̄X̄i
(dx). (3.1)

To obtain recursive formulas for the GDPR algorithm we will need to allow for
varying initial conditions. If we examine a generic particle at some time after the
algorithm has started, then it will be in a set of the form Cj/Cj+1 and have a killing
threshold in {0, . . . , j − 1}. Treating this as an initial condition requires that the
GDPR algorithm be defined in such a way that it actually simulates a branching
process, defined via splitting of X , that has the un-normalized induced measure

π̄i(dx) = eV (x)−V (x0)πi(dx).

For an unbiased algorithm, the killing threshold must take a prescribed form that
will be identified below. For the purposes of defining the algorithm with general
initial condition we temporarily denote the distribution of the support threshold of
the initial particle by I and call it the initialising distribution.

In order to accommodate stopping times, general cost functions as in (1.1) and
general initial conditions, one should replace (3.1) by

eV (x0)
∞∑
i=0

∫
D

f(x)e−V (x)δ̄X̄τ
i
(dx) = eV (x0)

∞∑
i=0

∫
D

f̄(x)δ̄X̄τ
i
(dx),

[where f̄(x) .= f(x) exp(−V (x))] for a suitably defined version of the branching
process, where contributions to the integral are terminated after each branched tra-
jectory first enters M ⊂ D. This observation motivates the definition of a generalized
DPR algorithm (GDPR) that follows. The killing of particles upon entry into M

should be kept logically distinct from the killing introduced to enhance algorithmic
efficiency. The superscript τ in X̄τ is used to indicate that trajectories are killed
after entry into M . Also, the definition f̄

.= fe−V will be used extensively in the
sequel.

The splitting thresholds, splitting rates and splitting processes of the algorithm
will be defined using importance functions V and splitting and initialization distri-
butions Qj,k and I as described previously. The generalized DPR algorithm, with
the dependence on these quantities suppressed in the notation, can be written in
pseudo code as follows.

Generalized DPR Algorithm (GDPR)
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Variables:
i current time
N τ

i number of particles at time i

X̄τ
i,j position of jth particle at time i

Cτ
i,j current threshold of jth particle at time i

Lτ
i,j support threshold of jth particle at time i

ŝ(f̄) (at termination) an estimator of Ex[
∑τ

i=1 f(Xi)]
j, k, l counting variables
Yi,j free variables

Initialization Step:
N τ

0 = 1, X̄τ
0,1 = x0, Cτ

0,1 = ρ(x0), ŝ(f̄) = f̄(X̄0,1), i = 0
generate a random variable L with distribution I
Lτ

0,1 = L

Main Algorithm:
while N τ

i �= 0
N τ

i+1 = 0
for j = 1, . . . , N τ

i

Test to see if the particle is not killed due to
stopping:
if X̄τ

i,j /∈ M

generate a random variable Yi,j with distribution

P (Yi,j ∈ dy) = P
(
Xi+1 ∈ dy

∣∣∣Xi = X̄τ
i,j

)
Test to see if the particle is not killed
due to threshold:
if ρ(Yi,j) ≥ Lτ

i,j

ŝ(f̄) = ŝ(f̄) + f̄(Yi,j)
N τ

i+1 = N τ
i+1 + 1

X̄τ
i+1,Nτ

i+1
= Yi,j

Cτ
i+1,Ni+1

= ρ(Yi,j)
Lτ

i+1,Ni+1
= Lτ

i,j

end

Test to see if the particle should be branched:
if ρ(Yi,j) > Cτ

i,j

let QCτ
i,j ,ρ(Yi,j ) be an independent sample from

the law QCτ
i,j ,ρ(Yi,j)

for k = 1, . . . , J

for l = 1, . . . , Q
Cτ

i,j ,ρ(Yi,j )

k

ŝ(f̄) = ŝ(f̄) + f̄ (Yi,j)
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N τ
i+1 = N τ

i+1 + 1
X̄τ

i+1,Nτ
i+1

= Yi,j

Cτ
i+1,Nτ

i+1
= ρ(Yi,j)

Lτ
i+1,Nτ

i+1
= k

end
end

end
end

end
i = i + 1

end
ŝ(f̄) = exp(V (x0))ŝ(f̄)

Note that ŝ(f̄) = eV (x0)
∑∞

i=0

∫
D f̄(y)δ̄X̄τ

i
(dy) as claimed. An algorithm resulting

from an importance function V , a collection of splitting distributions Qj,k and an
initializing distribution I will be said to be unbiased if

E
[
ŝ(f̄)

]
= Ex0

[
τ∑

i=0

f(Xi)

]

for all suitable f and τ . Recall that the splitting rates Rk are defined in terms of
the importance function by exp(Vk −Vk−1). Given an importance function V define
distributions Lk on {0, . . . , k} and Lj,k, j ≤ k on {j + 1, . . . , k} by

Lj,k(l) = (eVl − eVl−1)/(eVk − eVj) and Lk(l) = (eVl − eVl−1)/eVk. (3.2)

Theorem 3.2 Assume Condition 3.1. Suppose that an importance function V and
stochastic process {Xi} with initial condition X0 = x0 are given. If I = Lρ(x0) and

EQj,k

[
Qj,k

l

]
= (Rl − 1)

l−1∏
r=j+1

Rr =
(
eVl − eVl−1

)
/eVj = Lj,k(l)

(
eVk − eVj

)
/eVj ,

(3.3)
then the resulting GDPR algorithm is unbiased.

When in the sequel we refer to unbiased initial and splitting distributions, it is
assumed that they satisfy the conditions of Theorem 3.2, and indeed for the rest of
this paper only unbiased distributions will be considered. The proof of Theorem 3.2
relies on the following lemma.
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Lemma 3.3 Assume Condition 3.1 and let f̄(x) = f(x)eV (x). Let i ∈ Z+ be given.
For a GDPR scheme with unbiased initialising and splitting distributions,

eV (x0)Ex0


 Nτ

i∑
m=1

f̄(X̄τ
i,m)1{Lτ

i,m=l}


 = Ex0

[
f̄(Xi)(eVl − eVl−1)1{ρ(Xi)≥l}1{τ≥i}

]

and

eV (x0)Ex0

[∫
D

f̄(y)δ̄X̄τ
i
(dy)

]
= Ex0

[
f̄(Xi)eV (Xi)1{τ≥i}

]
= Ex0

[
f(Xi)1{τ≥i}

]
.

The proof of this Lemma is given in the appendix. The proof of Theorem 3.2 is
given below.

Proof of Theorem 3.2. Suppose that {Xi}, V , f , τ are given and that the
initialising and splitting distributions are unbiased. Let ŝ(f̄ , τ) and ŝ(f̄ , τ ∧ n), n =
1, . . . denote the output of the GDPR algorithms for estimating Ex0 [

∑τ
i=0 f(Xi)]

and Ex0

[∑τ∧n
i=0 f(Xi)

]
, n = 1, . . . respectively. Note that the GDPR algorithm

for estimating Ex0

[∑τ∧n
i=0 f(Xi)

]
is equivalent to running the GDPR algorithm for

simulating Ex0 [
∑τ

i=0 f(Xi)] and terminating it at time n. Thus ŝ(f̄ , τ∧n) → ŝ(f̄ , τ)
a.s. Using the Monotone Convergence Theorem (MCT)

Ex0

[
τ∑

i=0

f(Xi)

]
= lim

n→∞ Ex0

[
τ∧n∑
i=0

f(Xi)

]
.

If follows from Tonelli’s theorem and Lemma 3.3 that

Ex0

[
τ∧n∑
i=0

f(Xi)

]
=

n∑
i=0

Ex0

[
f(Xi)1{τ≥i}

]

=
n∑

i=0

eV (x0)Ex0

[∫
D

f̄(x)δ̄X̄τ
i
(dx)

]

= eV (x0)Ex0

[
n∑

i=0

∫
D

f̄(x)δ̄X̄τ
i
(dx)

]

= Ex0

[
ŝ(f̄ , τ ∧ n)

]
.

Thus it follows from the MCT that

Ex0

[
ŝ(f̄ , τ)

]
= lim

n→∞Ex0

[
ŝ(f̄ , τ ∧ n)

]
= lim

n→∞Ex0

[
τ∧n∑
i=0

f(Xi)

]

= Ex0

[
τ∑

i=0

f(Xi)

]
.
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In order for the GDPR algorithm to be useful in practice it is necessary to know
that it will terminate in finite time a.s. This is guaranteed by the following lemma.

Lemma 3.4 Assume Condition 3.1. Then the GDPR algorithm almost surely ter-
minates in a finite time.

Proof. Choose an arbitrary i ≥ 0. Define f̄(x) by eV (x0)f̄(x) = 1 for all x, and
note that this implicitly requires f(x) = eV (x)−V (x0). Then

Ex0 [N τ
i ] = Ex0


Nτ

i∑
j=1

1


 = Ex0

[∫
D

eV (x0)f̄ (x)δ̄X̄τ
i
(dx)

]
.

It follows from Lemma 3.3 that

Ex0 [N τ
i ] = Ex0

[
eV (Xi)−V (X0)1{τ≥i}

]
. (3.4)

Therefore by Markov’s inequality and the fact that VJ = maxj=1,...,J {Vj} ,

Px0 (N τ
i > 0) ≤ Ex0

[
eV (Xi)−V (X0)1{τ≥i}

]
≤ Px0 (τ ≥ i) eVJ

→ 0

as i → ∞. Note that N τ
i = 0 if and only if the simulation has terminated by time

i, since N τ
i = 0 obviously implies N τ

k = 0 for all k ≥ i. Since τ < ∞ a.s., the result
now follows from the fact that

Px(GDPR algorithm does not terminate) ≤ P (N τ
i > 0)

for all i.

4 Performance Measures

Missing from the discussion so far is any specific form for the splitting distribution
Qj,k. We now give a very natural example which will be used throughout the rest
of the paper, which is in fact the one proposed in [20, 21] for the original DPR
algorithm. We make no claim of optimality for this particular choice. However,
the resulting GDPR algorithm is simple and efficient to implement and also lends
itself to analysis. To simplify the presentation, we describe random variables with
the desired distribution.

Recall that the multinomial distribution M(N, p1, . . . , pd) on d-tuples x1, . . . , xd ∈
Z

d
+ : x1 + · · ·+ xd = N is defined by

12
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P ((x1, . . . , xd) = (n1, . . . , nd)) =
(

N

n1 · · ·nd

)
pn1
1 · · ·pnd

d .

Given a scalar a let {a} = a − �a� denote its fractional part. For j < k let A1,
A2 and b be independent random vectors and random variables such that b equals 1
with probability {(eVk − eVj)/eVj} and 2 otherwise, and A1 and A2 are distributed
according to

M

(⌈
eVk − eVj

eVj

⌉
,
eVj+1 − eVj

eVk − eVj
, . . . ,

eVk − eVk−1

eVk − eVj

)
and

M

(⌊
eVk − eVj

eVj

⌋
,
eVj+1 − eVj

eVk − eVj
, . . . ,

eVk − eVk−1

eVk − eVj

)
,

respectively. The splitting distributions Qj,k we consider are those which are equal
to the distributions of the random variables (Qj,k

0 , Qj,k
1 , . . .), where

Qj,k
l = 0 if l /∈ {j + 1, . . . , k}

and (
Qj,k

j+1, . . . , Q
j,k
k

)
=
{

A1
l−j if b = 1

A2
l−j if b = 2

.

It is easy to check that for any j < l ≤ k

E[Qj,k
l ] = (eVl − eVl−1)/eVj

and Qj,k
l = 0 otherwise, and so the resulting algorithm is unbiased [see Theorem

3.2].
Note that we have already assumed that the initializing distribution is I = Lρ(x0).

In actual numerical implementation it is always the case that x0 ∈ C0, which implies
that all mass is on l = 0. The following condition will be used for the rest of the
paper.

Condition 4.1 Given an importance function V , the GDPR algorithm is imple-
mented using the splitting distributions described in this section.

The performance of the GDPR algorithm depends on two factors: the second
moment (and hence variance) of the estimator and the computational cost of each
simulation. To avoid discussion of the specific implementation of the algorithm the
computational cost is defined to be

w =
∞∑
i=0

N τ
i ,

13
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i.e., the sum of the lifetimes of all the particles simulated. In this section formulae
for both are derived in terms of only the importance function and the underlying
process. Throughout it is assumed that {Xi} , τ, V and f are given. The first result
is an expression for the cost of the GDPR algorithm which follows directly from
(3.4) and the definition of w.

Theorem 4.2 Assume Condition 3.1. Then

Ex0 [w] = e−V (x0)Ex0

[
τ∑

i=0

eV (Xi)

]
.

Note that the expression does not depend on the choice of (unbiased) splitting
mechanism.

Next we give bounds for the second moment of the estimator. These bounds will
be used later to extend the framework developed in [9] for splitting schemes to the
design and analysis of GDPR schemes. The proofs are given in the appendix.

Theorem 4.3 Assume Conditions 3.1 and 4.1. Then

Ex0[(ŝ(f̄))2] ≤ eV (x0)Ex0


 τ∑

i=1

e−V (Xi−1)

(
f(Xi−1) + EXi

[
τ∑

k=0

f(Xk)

])2

 . (4.1)

Theorem 4.4 Assume Conditions 3.1 and 4.1. Then

Ex0[(ŝ(f̄))2] ≥ eV (x0)Ex0

[
τ∑

i=0

e−V (Xi)f(Xi)2
]

.

5 Design and Asymptotic Analysis of GDPR Schemes

Thus far we have only addressed the problem of estimating a single expected value
of the form (1.1). Now we shall turn to the problem of estimating a sequence of such
expected values

Exn

[
τn∑
i=0

fn(Xn
i )

]
, n = 1, 2, . . . (5.1)

for which a large deviations rule holds. We assume xn → x as n → ∞ with each
xn /∈ M . The asymptotic performance of GDPR schemes will be evaluated using
the following measure of work-normalised error:

lim
n→∞

1
n

log
Exn

[
(ŝn)2

]
Exn [wn]

Exn

[∑τn

i=0 fn(Xn
i )
]2 .

14
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Suppose that −(1/n) logExn

[∑τn

i=0 fn(Xn
i )
]
→ γ as n → ∞. A use of Jensen’s

inequality as in the Introduction shows that the best possible rate of decay for the
work-normalised error is zero, and this occurs only when the work grows subex-
ponentially and the second moment Exn

[
(ŝn)2

]
decays at rate 2γ. Bounds on the

asymptotic behavior of the work-normalised error will be obtained via Theorems
4.2, 4.3 and 4.4.

Within the general framework of (5.1) there are two cases of particular interest.
The first is that of hitting probabilities, such as the probability that Xn hits some
rare set B before hitting a typical set A, after starting at xn /∈ A ∪ B. In this case
M = A∪B and fn(x) = 1B(x). The second case occurs as one of two approaches dis-
cussed in Section 7.2 for approximating stationary measures, and uses τn = �Tn�+1
for some fixed T ∈ (0,∞) and a general cost fn. The theory presented in this section
will require some fairly standard assumptions on the stability and large deviations
behavior of {Xn

i }, and also some regularity properties on M and fn. For example,
in the case of hitting probabilities we will want to know that τn/n can essentially
be taken as bounded, in the sense that there is some T < ∞ such that the event
τn/n > T is unimportant as far as the large deviation asymptotics are concerned.
This is an important qualitative assumption, and is related to stability properties
of the law of large number limit processes obtained when n → ∞.

We next state some basic assumptions, including a large deviation property for
the continuous time processes defined by Xn(t) = Xn

i for t ∈ [i/n, i/n + 1/n) .

Condition 5.1 1. There is a fixed closed set M ⊂ D such that for all n, τn =
inf {i : Xn

i ∈ M}.
2. There is a lower semicontinuous and bounded from below function F (y) such

that for all y ∈ D and n

fn(y) = exp (−nF (y)) .

3. For every T ∈ (0,∞) the sequence {Xn, n = 1, 2, . . .} satisfies a large deviation
principle (LDP) on D ([0, T ] : D) with a rate function of the form

∫ T

0
L(φ(s), φ̇(s))ds

if φ ∈ D ([0, T ] : D) is absolutely continuous and ∞ otherwise. This LDP is
uniform with respect to initial conditions in compact sets [10, 15].

As remarked above, the conditions we use beyond the LDP can be partitioned
into “stability” and “regularity” type conditions. We next give two conditions which
will be sufficient (but not necessary) for what follows. In particular, the condition
we refer to as “controllability” can be weakened, but without this assumption it may

15
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not be obvious if a large deviation limit can be assumed for the sequence of expected
values or probabilities of interest. Moreover, the sufficient conditions we give now
will by themselves cover many interesting problems.

Condition 5.2 For any compact κ ⊂ D

lim sup
T→∞

lim sup
n→∞

sup
x∈κ

−1
n

logPx {τn/n ≥ T} = −∞

and for any l ∈ Z+

lim sup
n→∞

sup
x∈κ

1
n

logEx(τn)l < ∞.

Given the large deviations principle, conditions such as this will follow when all
zero cost trajectories with initial conditions in a compact set K are forced to enter
M◦ by some fixed finite time (which can depend on K). See the discussion in [15,
Lemma 2.2, Chapter 4]. For verification in the context of stable stochastic networks,
where M often includes the origin though M◦ does not and hence the constructions
of [15, Lemma 2.2, Chapter 4] do not directly apply, see [12, Appendix A] and [14,
Lemma A.4]. An example where Condition 5.2 would not hold is when there are
two attractors for the zero cost trajectories, M contains one of the attractors but
not the other, and the process starts in the domain of attraction of the stable point
that is not in M .

Condition 5.3 1. Let ε > 0. Given any compact set K ⊂ D, there is δ > 0
such that if x, y ∈ K ∩ (M◦)c satisfy ‖x − y‖ ≤ δ, then there is σ ≤ ε and
a trajectory φ connecting x to y such that φ(r) /∈ M for all r ∈ (0, σ) and∫ σ
0 L(φ(s), φ̇(s))ds ≤ ε.

2. Let T < ∞ and a bounded and continuous function H be given. Consider any
sequence of times in ≤ τn ∧ �nT � such that in/n → t ≤ T and xn /∈ M such
that xn → x. Then

lim sup
n→∞

1
n

logExne−nH(Xn
in

) ≤ − inf
[∫ t

0
L(φ(r), φ̇(r))dr + H(φ(t))

]
, (5.2)

where the infimum is over all φ that satisfy φ(r) /∈ M for r ∈ (0, t).

One can consider part 1 as a “controllability” condition. A simple sufficient
condition is that L(x, β) be continuous, bounded on each compact subset of R

d×R
d,

and regularity of the boundary of M . The formulation of (5.2) is nonstandard, in
that it assumes an upper bound in terms of the infimum over a set that is not
necessarily closed. Under conditions such as continuity and boundedness of the
local rate function (on compact sets), one can show that the infimum over the
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indicated trajectories and their closure is the same, and so (5.2) follows from the
usual large deviation upper bound. The motivation for the formulation as given is
specifically to cover stochastic networks. With stochastic networks one often has
0 ∈ M , though not 0 ∈ M◦. Owing to discontinuities of the local rate at the origin,
the corresponding infimum over the closed set of trajectories, while valid, is not at
all tight. Prelimit process trajectories which stay near but do not touch the origin
are quite rare in the sense that (5.2) holds as stated. However, the deterministic
trajectory which remains at the origin has zero rate, and hence the closure operation
in the infimum produces a bound that is not tight and not useful. Again, we refer
to [12] and [14] for further discussion on this point.

The controllability condition is not necessary. However, as remarked previously,
without such a condition it is harder to establish when large deviations limits exist
[as opposed to separate upper and lower bounds], and hence such limits are then
often verified on a case-by-case basis.

We make the definition

J (y, z) = inf
φ:φ(0)=y;φ(T )=z;φ(s)/∈M,s∈(0,T );T<∞

∫ T

0
L(φ(s), φ̇(s))ds. (5.3)

for y, z /∈ M◦. Under Condition 5.3 J (y, z) is uniformly continuous on compacts.
The definition of J (y, z) is extended to D×D by letting J (y, z) = ∞ if y or z ∈ M◦

with y �= z, and J (y, z) = 0 if y = z ∈ M◦.
It is clear that defining a GDPR scheme for a sequence of expected values of the

form (5.1) is equivalent to defining a sequence {V n} of importance functions. We
propose that this be done using what we call GDPR scheme generating functions,
which will always be abbreviated to generating functions. A generating function
U is a continuous function on D that is bounded from below. Once a generating
function has been chosen it can be used to define a sequence of importance functions
{V n} in the following manner. First choose a fixed positive real number ∆. Then
for each n define an importance function V n by

V n(y) = 0 ∨ Ṽ n(y).

where

Ṽ n(y) = ∆
⌊

nU(xn) − nU(y)
∆

⌋
.

Consider the problem of hitting probabilities. In this case one expects the impor-
tance function to increase as y approaches the rare set B. A corresponding generat-
ing function will thus typically decrease as y approaches B. The construction guaran-
tees that V n(y) achieves its minimum of zero at y = xn, and since U is bounded from
below V n/n is bounded from above. If xn → x, then V n(y)/n → (U(x)− U(y))∨ 0
as n → ∞ uniformly in y ∈ D.

17
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For the generating function approach to be practical one must be able to identify
those functions which lead to schemes with good asymptotic performance. It will
turn out that good generating functions are characterized by their relationship to
the cost function J (y, z).

Definition 5.4 A continuous function G(y) is a subsolution to (5.3) if G(y) −
G(z) ≤ J (y, z) for all y, z ∈ D.

The definition of subsolution used here is phrased purely in terms of the calculus
of variations problem. This is slightly different from previous definitions, such as the
PDE formulation of subsolutions used in [9]. The definition via calculus of variations
is somewhat more to the point of what is required and used in the proofs. The well-
known relations between the two are discussed in the next section. In the sequel we
will show that if F is bounded and continuous, if U is a subsolution to (5.3) and if
{V n} is the sequence of importance functions defined as above, then

lim
n→∞−1

n
log Exn

[
(ŝn)2 (f̄n)

]
= inf

y∈D
{J (x, y) + (U(x) − U(y)) ∨ 0 + 2F (y)}

and
lim

n→∞
1
n

logExn [wn] = 0.

Thus the work associated with such a scheme grows subexponentially, and the per-
formance is determined by the value U(x). The best possible rate of decay is 2W (x),
where W (x) is defined by

γ = W (x) = inf
y∈D

[J (x, y) + F (y)] . (5.4)

If y is a minimizing point in (5.4), then achieving this best rate will require U(x)−
U(y) = J (x, y), i.e., that U(x) takes the maximum possible value at x. The question
of finding suitable subsolutions will be addressed in more detail in the next section.

We will further show that if U is not a subsolution then there exists some y ∈ D

such that if xn → y then

lim inf
n→∞

1
n

logExn [wn] > 0.

It follows that generating functions which are not subsolutions should not be used to
design GDPR schemes, as it is possible that the computational costs of such schemes
will grow exponentially.

We will also prove an extension that allows one to relax the boundedness and
continuity assumptions on F . The relaxation will be needed when considering the
problem of estimating stationary measures and hitting probabilities
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For convenience we recall the results of Theorems 4.3 and 4.4, rewritten using
the large deviation scaling and incorporating the fact that V n(xn) = 0:

Exn


 τn∑

i=1

e−V n(Xn
i−1)


e−nF (Xn

i−1) + EXn
i


 τn∑

j=0

e−nF (Xn
j )






2
 ≥ Exn

[(
ŝn(f̄n)

)2]
(5.5)

and

Exn

[(
ŝn(f̄n)

)2] ≥ Exn

[
τn∑
i=0

e−V n(Xn
i )e−n2F (Xn

i )

]
. (5.6)

In the following theorem we distinguish between cases when x /∈ M and x ∈ ∂M .
The reason is because lower bounds on probabilities involving the hitting time τn

can depend on the detailed properties of the underlying process (and not just on its
large deviation rate function) when x ∈ ∂M , and so we only state the upper bound
in that case. However, if large deviation limits are available for the expected values
or probabilities that are being estimated via GDPR, then the same argument used
establish coincidence of the upper and lower large deviation bounds could be used
here as well to show that the limit (and not just limit inferior) holds when x ∈ ∂M .
Analogous comments also apply for Theorem 5.6, where we relax the continuity and
boundedness of F .

Theorem 5.5 Assume Conditions 3.1, 4.1, 5.1, 5.2 and 5.3. Suppose that xn →
x /∈ M , that F is bounded and continuous, and that U is a subsolution. Then

lim
n→∞−1

n
log Exn

[(
ŝn(f̄n)

)2] = inf
y∈D

[J (x, y) + (U(x)− U(y)) ∨ 0 + 2F (y)] . (5.7)

If xn → x ∈ M with each xn /∈ M , then the corresponding limit inferior holds.

Proof. Let R
.= infy∈D [J (x, y) + (U(x)− U(y)) ∨ 0 + 2F (y)], and choose y that

is within ε > 0 of the infimum in the definition of R. Let φ and T be within ε
of the infimum in the definition of J (x, y). Given η > 0, since x /∈ M there is
δ > 0 such that φ(s) is at least distance δ from M for s ∈ [0, T − η]. Hence if a
trajectory of Xn stays in the open ball of radius δ about φ then τn ≥ �n(T − η)�.
Since V n(y)/n → (U(x)− U(y)) ∨ 0 uniformly, by (5.6)

lim inf
n→∞

1
n

logExn

[(
ŝn(f̄n)

)2]

≥ lim inf
n→∞

1
n

logExn

[
τn∑
i=0

e−V n(Xn
i )e−n2F (Xn

i )

]
(5.8)

≥ lim inf
n→∞

1
n

logExn

[
e
−V n(Xn

�n(T−η)�)e
−n2F (Xn

�n(T−η)�)
]

≥ −
∫ T−η

0

L(φ(s), φ̇(s))ds− (U(x)− U(φ(T − η))) ∨ 0 − 2F (φ(T − η)).
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Letting η ↓ 0 gives

lim inf
n→∞

1
n

logExn

[(
ŝn(f̄n)

)2] ≥ −R − 2ε,

and since ε > 0 is arbitrary this proves the lower bound.
We now turn to the upper bound, which is based on (5.5). Using the inequality

(a + b)2 ≤ 2a2 + 2b2, the left hand side of (5.5) is less than or equal to

2Exn

[
τn∑
i=1

e−V n(Xn
i−1)e−2nF (Xn

i−1)

]

+2Exn


 τn∑

i=1

e−V n(Xn
i−1)


τ1,i,n∑

j=i

e−nF (X
1,i,n
j )




τ2,i,n∑

j=i

e−nF (X
2,i,n
j )




 , (5.9)

where Xk,i,n
j are (conditionally) independent copies of Xn

j that start at Xn
i at j = i.

It follows from Conditions 5.2 and 5.3 and the fact that V n(y)/n → (U(x)−U(y))∨0
that the first term in (5.9) obeys the necessary large deviations upper bound. Later
in the proof we will show that the large deviation asymptotics of the second quantity
in (5.9) are the same as those of

Exn


τn∧�nT 	∑

i=0

e−V n(Xn
i )


τ1,i,n∧�nT 	∑

j=i

e−nF (X1,i,n
j )




τ2,i,n∧�nT 	∑

j=i

e−nF (X2,i,n
j )




 (5.10)

for some fixed and finite T . Assuming this claim, observe that there are no more
than order n3 terms in the expected value, and it suffices to obtain the desired
upper bound on each of these terms. Accordingly, consider in ≤ τn ∧ �nT �, jk

n ≤
τk,i,n ∧ �nT � and assume that in/n → t, jk

n/n → sk, k = 1, 2, with t ≤ sk ≤ T .
Owing to Condition 5.3, the convergence of V n, and the fact that the infimum over
the two trajectories on the intervals [t, sk] will obviously be the same,

lim sup
n→∞

1
n

logExn

[
e−V n(Xn

in
)e

−nF (X
1,i,n

j1n
)
e
−nF (X

2,i,n

j2n
)
]
≤ − inf

[∫ t

0
L(φ(r), φ̇(r))dr

+(U(x) − U(φ(t))) ∨ 0 + 2
∫ s

t

L(φ(r), φ̇(r))dr + F (φ(s))
]

,

where the infimum is over φ with the property that φ(r) /∈ M◦ for r ∈ (0, t)∪ (t, s).
By the definition of J (x, y) the infimum is bounded below by

inf
y∈D,z∈D

[J (x, y) + (U(x)− U(y)) ∨ 0 + 2J (y, z) + 2F (z)] .

Using the subsolution property of U(y) and that for any x, y, z ∈ D, J (x, y) ≤
J (x, z) + J (z, y), the last infimum is bounded below by

inf
y∈D

[J (x, z) + (U(x)− U(z)) ∨ 0 + 2F (z)] ,
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and the upper bound follows.
It remains to show that the second term in (5.9) has the same large deviation

asymptotics as (5.10). We first prove that

lim sup
T→∞

lim sup
n→∞

1
n

logExn


1{τn/n≥T }

τn∑
i=1

e−V n(Xn
i−1)


τ1,i,n∑

j=i

e−nF (X1,i,n
j )


(5.11)


τ2,i,n∑

j=i

e−nF (X
2,i,n
j )




 ≤ −∞.

For fixed T < ∞ Hölder’s inequality implies that for any p > 1 and q > 1 with
1/p + 1/q = 1, the expected value is bounded above by

en2‖F‖∞Exn

[
1{τn/n≥T }

τn∑
i=1

τ1,i,nτ2,i,n

]

≤ en2‖F‖∞Exn

[
1{τn/n≥T } (τn)3

]
≤ en2‖F‖∞

(
Exn

[
1{τn/n≥T }

])1/p
(
Exn

[
(τn)3q

])1/q
.

It follows from Condition 5.2 that in order to prove (5.11) it suffices to show that
for q > 1

lim sup
n→∞

1
n

log Exn

[
(τn)3q

]
< ∞.

but this also follows from Condition 5.2.
To justify bounding the other random times by �nT � we show

lim sup
T→∞

lim sup
n→∞

1
n

logExn


τn∧�nT 	∑

i=1

e−V n(Xn
i−1)

(
1{τ1,i,n/n≥T } + 1{τ2,i,n/n≥T }

)
(5.12)


τ1,i,n∑

j=i

e−nF (X1,i,n
j )




τ2,i,n∑

j=i

e−nF (X2,i,n
j )




 ≤ −∞.

In this case the expected value is bounded above by

2en2‖F‖∞
�nT 	∑
i=1

Exn

[
1{τn/n≥i}1{τ1,i,n/n≥T }τ

1,i,nτ2,i,n
]
.

A similar use of Hölder’s inequality shows that for any p > 1 and q > 1 with
1/p + 1/q = 1 the expected value is bounded above by

2en2‖F‖∞
�nT 	∑
i=1

(
Exn

[
1{τn/n≥T }

])1/p
(
Exn

[
(τn)2q

])1/q
.
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Thus (5.12) follows from Jensen’s inequality and Condition 5.2.
We complete the proof that the quantities (5.9) and (5.10) have the same large de-

viation asymptotics by showing that one can replace V n(Xn
i ) in (5.10) by V n(Xn

i−1).
However, it follows from the fact that rate functions have compact level sets that
given any M < ∞ and a > 0, there exists a compact set K and N < ∞ such that
if n ≥ N , then the event Xn

i /∈ K or
∥∥Xn

i−1 − Xn
i−1

∥∥ ≥ a for any i ≤ �nT � has
probability at most e−nM . This justifies the replacement, and completes the proof.

The following theorem provides a partial relaxation of the continuity and bound-
edness conditions imposed on F .

Theorem 5.6 Assume Conditions 3.1, 4.1, 5.1, 5.2 and 5.3. Suppose that xn → x

with each xn /∈ M , that F = − log 1{x∈G} for some G ⊂ D, and that U is a
subsolution. Then

1. If G is a closed subset of D

lim inf
n→∞ −1

n
logExn

[(
ŝn(f̄n)

)2] ≥ inf
y∈D

{J (x, y) + (U(x) − U(y)) ∨ 0 + 2F (y)} .

2. If G is a open subset of D and x /∈ M

lim sup
n→∞

−1
n

logExn

[(
ŝn(f̄n)

)2] ≤ inf
y∈D

{J (x, y) + (U(x) − U(y)) ∨ 0 + 2F (y)} .

3. If G = G◦ and x /∈ M

lim
n→∞−1

n
logExn

[(
ŝn(f̄n)

)2] = inf
y∈D

{J (x, y) + (U(x) − U(y)) ∨ 0 + 2F (y)} .

Proof. Parts 1 and 2 can be shown to follow from Theorem 5.5 using exactly the
same method as in the proof of Theorem 1.2.3 in [10] (note that compactness of level
sets is part of the definition of an LDP). Part 3 then follows using Condition 5.3.

Theorem 5.7 Assume Conditions 3.1, 4.1, 5.1, 5.2 and 5.3. If the generating
function U(x) is a subsolution then

lim
n→∞

1
n

logExn [wn] = 0.

Proof. We know from Theorem 4.2 and the fact that V n(xn) = 0 for all n that

Exn [wn] = Exn

[
τn∑
i=0

eV n(Xn
i )

]
.
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Since V n/n is bounded, it follows as in the proof of the upper bound in Theorem
5.5 that the large deviation asymptotics of Exn [wn] are the same as those of

Exn


τn∧�nT 	∑

i=0

eV n(Xn
i )




for some sufficiently large but finite T . The convergence V n(y)/n → (U(x)−U(y))∨0
and the same line of argument as in Theorem 5.5 shows

lim sup
n→∞

1
n

logExn


τn∧�nT 	∑

i=0

eV n(Xn
i )


 ≤ − inf

y∈D
[J (x, y)− (U(x)− U(y)) ∨ 0] .

By the subsolution property U(x)−U(y) ≤ J (x, y), and so the upper bound follows.
Since Exn [wn] ≥ 1 for all n the lower bound is automatic, which completes the proof.

Theorem 5.8 Assume Conditions 3.1, 4.1 and 5.3. If the generating function U(x)
is not a subsolution then there exists some initial condition y such that if xn → y
then

lim inf
n→∞

1
n

logExn [wn] > 0.

In particular note that if U is a subsolution then the work associated with the
scheme grows subexponentially while generating functions which are not subsolu-
tions should not be used to design GDPR schemes, as it is possible that the compu-
tational costs of such schemes will grow exponentially.

Proof of Theorem 5.8. Suppose that there exist y, z /∈ M such that

U(y)− U(z) > J (y, z).

It follows from the definition of J (y, z) that y /∈ M◦ and z /∈ M◦. Since U is
continuous and we assume that J (y, z) is continuous we can restrict our analysis to
the domain M c × M c. It follows that there exist δ, ε > 0 such that U(y) − U(z̃) >

J (y, z)+ ε for all z̃ such that |z̃ − z| < δ. Choose a sequence of initial conditions yn

such that yn → y. Then for all n

Eyn

[
τn∑
i=0

eV n(Xn
i )

]
≥ en(J (y,z)+ε)−2∆Pyn(|Xn

i − z| < δ for some 0 ≤ i ≤ τn)

¿From Condition 5.3 we know that lim 1
n logPyn(|Xn

i − z| < δ for some 0 ≤ i ≤
τn) ≥ −J (y, z) and so the result follows.
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6 Constructing Generating Functions

As discussed in the last section, one can construct good GDPR schemes by finding
suitable generating functions U(y). Recall that the asymptotic performance of a
scheme based on a subsolution is given by

inf
y∈D

{J (x, y) + (U(x) − U(y)) ∨ 0 + 2F (y)} ,

for which we have the a priori bound 2W (x) = 2 infy∈D {J (x, y) + F (y)}. Ob-
serve that if y∗ ∈ D minimizes in this definition then we can restrict attention to
subsolutions with the property U(x) ≥ U(y∗), since otherwise the identically zero
subsolution would do better. Observe also that U is subsolution in the sense of
Definition 5.4 if and only if the same is true for U +a for any constant a. Since both
F and U are bounded and continuous we can normalize by requiring U(y) ≤ F (y)
for all y, in which case the asymptotic performance is bounded below

inf
y∈D

{J (x, y) + U(x) + F (y)} = W (x) + U(x),

with the best possible performance given if U(x) achieves the maximum possible
value of W (x). This interpretation is closer to that used in a previous paper [9],
where only lower bounds of this form were given on performance, and conditions such
as U(y) ≤ F (y) became, in the hitting probabilities context used in [9], boundary
conditions of the form U(y) ≤ 0, y ∈ ∂B.

An obvious candidate for U(y) is of course the solution W (y) to the calculus
of variations problem (5.4). Clearly W (y) is bounded from below and continuous.
Moreover (5.4) implies that W (y) − W (z) ≤ J (y, z) for all y, z ∈ D. Thus W (y)
is a generating function which is a subsolution in the sense of Definition 5.4. Since
it obviously achieves the maximum value, a GDPR scheme derived from W (y) is
asymptotically optimal.

While this property makes W (y) a potentially good choice for generating func-
tion, in practice it is often unavailable. However, in many cases it is possible to
obtain simple alternatives which are also asymptotically optimal. One approach is
to use the theory of viscosity solutions for nonlinear PDE. The general form of the
PDE depends on the particular structure of the problem. For example, for hitting
probabilities one has a nonlinear PDE together with Dirichlet boundary conditions,
while for the general continuous exponential exp−nF the nonlinear PDE is replaced
by a quasivariational inequality. The main point is that, under broad conditions,
subsolutions in the sense of Definition 5.4 (suitably normalized as discussed above)
define subsolutions in the viscosity sense [7] for the appropriate PDE, and conversely,
a subsolution in the viscosity sense is also a subsolution in the sense of Definition
5.4.

It turns out that the PDE characterization is more convenient for the explicit
construction of subsolutions than the one based on the calculus of variations problem
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(see the many examples given in [13]), and examples will be given in the following
section on numerical examples. Consider, for example, the construction of subso-
lutions for the problem of hitting probabilities. Under regularity conditions, the
corresponding PDE is

H(y, DW̄(y)) = 0, y ∈ D\M, W̄ (y) = 0, y ∈ ∂B, W̄ (y) = ∞, y ∈ ∂A, (6.1)

where for y ∈ D, q ∈ R
d

H(y, q) = inf
β∈Rd

[〈q, β〉+ L(y, β)] ,

and L is the Lagrangian function in (5.3). It is sometimes possible to find sim-
ple functions which satisfy the subsolution property in D\M . The concavity of
q → H(y, q) for each y implies that the pointwise minimum of a finite collection
of subsolutions also satisfies the subsolution property in D\M . Hence, one can
try to build a function which also satisfies the boundary condition in M as such a
minimum. Also, the pointwise maximum of such functions satisfies the subsolution
property in D\M . It should be noted that the constructions in [13] ultimately pro-
duce piecewise smooth classical subsolutions, which correspond to a stronger notion
of subsolution than of the viscosity subsolutions required by the GDPR algorithm.

An alternative approach is possible for the problem of simulating hitting prob-
abilities when the Freidlin-Wentzell quasipotential [15] exists. Consider an initial
condition x, and suppose that all zero cost trajectories for the large deviation rate
function are attracted to x. Then the quasipotential UQP(y) is defined by

UQP(y) = inf
φ:φ(0)=x;φ(T )=y;T<∞

∫ T

0
L(φ(s), φ̇(s))ds.

which is the same as J (x, y) except trajectories need not avoid M . If the quasipo-
tential UQP(y) is well defined then the function

U∗(y) .= −UQP(y)

is a subsolution in the sense of Definition 5.4 and fulfills all the requirements of an
asymptotically optimal generating function for the initial condition x, except that
it is not necessarily bounded below. Observe that the infimum in infy∈B UQP(y)
must correspond to a trajectory that leaves A immediately and touches B for the
first time at T , and hence is also a candidate trajectory in the definition of J (x, y).
Using (U∗(x) − U∗(y))∨0 = UQP(y), we have infy∈D

{J (x, y) + 2F (z) + UQP(y)
}

=
2 infy∈B J (x, y), and so at least formally U∗(y) yields an asymptotically optimal
scheme.

Two issues that prohibit the direct application of this result are that U∗(y)
as defined is not bounded from below, and also that for the stability conditions to
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imply bounds such as Condition 5.2 one usually requires something like x ∈ M◦. The
latter issue is not actually a problem in many applications to queueing systems and
stochastic networks. In these cases x is the origin, and conditions such as Condition
5.2 hold without x being interior to M [13]. Alternatively one may consider an
attracting point x∗ ∈ M◦ and initial conditions x that are close to x∗, in which case
the quasipotential defines a nearly asymptotically optimal scheme.

With regard to the first issue, U∗ cannot be used directly since the boundedness
from below is required in the proofs of Theorems 5.5 and 5.7 to ensure that the
number of splitting thresholds is bounded for each n. There is, however, a remedy,
and one can construct an asymptotically optimal generating function simply by
replacing UQP(y) by UQP(y) ∧ α for sufficiently large α. Consider for example the
problem of hitting probabilities. Given the initial condition x and a corresponding
minimizing y∗ in the definition of W (x), one can then choose any α larger than
UQP(y∗). If α is chosen smaller than this value then the resulting schemes will be
asymptotically suboptimal. If chosen larger then there is (relatively) little harm.
The scheme will still be asymptotically optimal (and perhaps might even have a
smaller variance for a given finite value of n), but the expected computational cost
per sample run will be somewhat larger (see Theorem 4.2). A concrete example of
how the quasipotential can be used to construct GDPR schemes in practice is given
in the next section.

7 Numerical Examples

In this section we present numerical results. We study three problems: hitting
probabilities for queueing networks, stationary measures for queueing networks and
a problem concerning rare events of the sample mean of a sequence of iid random
variables. For each case we present an estimate based on a stated number of runs,
standard errors and (formal) confidence intervals for each estimate based on an
empirical estimate of the variance and the total CPU time required to calculate
each estimate.

It is instructive to compare the results for estimating hitting probabilities given
in this section with those obtained for the splitting algorithm in [9]. In both cases
the problems considered and the importance functions used are identical, further the
simulations were all run on the same computer and so the total CPU time can be
used as a fair measure of the computational cost of the algorithms. As can be seen
the standard deviations of the GDPR and splitting algorithms are almost identical
while in all cases the computational cost of the GDPR algorithm is much less than
that of the splitting algorithm. For example, the first set of numerical experiments
discussed below consider total population and individual buffer overflow problems
for a tandem Jackson network, each for several values of n. While the standard errors
are essentially the same, the computational time for the GDPR scheme ranges from
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14% to 4% of the corresponding time required for ordinary splitting. Indeed the
cost of the splitting algorithm relative to that of the GDPR algorithm can be seen
to increase with the large deviations parameter n, and the numerical experiments
suggest that the ratio of the cost of the splitting algorithm to that of the GDPR
algorithm grows without bound as n → ∞. Further the results in [8] show that
the GDPR algorithm shows a similar advantage over the splitting algorithm when
applied to the other queueing problems discussed in this section. Thus in practice
the evidence indicates that the GDPR algorithm provides a large improvement in
performance relative to that of the splitting algorithm in a wide range of contexts.

7.1 Hitting Probabilities

We study three problems: buffer overflow for a tandem Jackson network with one
shared buffer, simultaneous buffer overflow for a tandem Jackson network with sep-
arate buffers for each queue, and buffer overflow for a simple Markov modulated
queue.

We start with the problem of estimating the probability of a buffer overflow
event for a simple tandem Jackson network. Let Q1(t), Q2(t) denote the state at
time t and assume the stability condition λ < min{µ1, µ2} (see [16] for a discussion
of such processes). Suppose that the two queues share a single buffer and that we
are interested in

pn = P(1,0) (Q1(τn) + Q2(τn) ≥ n) ,

where τn = inf {t > 0 : Q1(t) + Q2(t) ∈ 0 ∪ [n,∞)}. It is well known that

lim
n→∞−1

n
log pn = ρ1 ∧ ρ2,

where ρi = log µi
λ . Without loss of generality one can assume that µ2 ≤ µ1 (see [12])

and hence ρ1 ∧ ρ2 = ρ2. Let

(Xn
1 (i), Xn

2 (i)) =
1
n

(Q1(ti), Q2(ti)) , (7.1)

where ti is the time of the ith change in state of (Q1(t), Q2(t)). Then the probabilities
pn can be written as pn = pn((1, 0)), where

pn((a, b)) = P(a,b) {Xn
1 + Xn

2 reaches 1 before returning to (0, 0)} .

We will construct an asymptotically optimal scheme by in terms of a viscosity
subsolution. Define the Hamiltonian H by

H(p) = −2 log[λe−p1 + µ1e
(p1−p2) + µ2e

p2]. (7.2)
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A smooth function V̄ will be a subsolution to the relevant PDE if the following
inequalities hold [7]:

H(DV̄ (y)) ≥ 0, y1 + y2 ≤ 1, y1 > 0, y2 > 0
H(DV̄ (y)− a(0, 1))∨ 〈(0, 1),−DV̄ (y) + a(0, 1)

〉 ≥ 0, y1 = 0, y2 ∈ (0, 1), a ≥ 0
H(DV̄ (y) − a(1, 0))∨ 〈(1,−1),−DV̄ (y) + a(1, 0)

〉≥ 0, y1 ∈ (0, 1), y2 = 0, a ≥ 0
V̄ (y) ≤ 0, y1 + y2 = 1, y1 ≥ 0, y2 ≥ 0.

The second and third inequalities are the viscosity formulation of the appropriate
Neumann boundary conditions [11], with for example DV̄ (y) − a(0, 1) describing
the general form of all sub-differentials on the boundary y1 = 0 and with respect to
the domain y1 + y2 ≤ 1, y1 ≥ 0, y2 ≥ 0. The last inequality is a Dirichlet boundary
condition, and the Dirichlet boundary condition at the origin [V̄ (0) ≤ ∞] is omitted
since it holds automatically. If a smooth function satisfies these properties, then
by using the form of the large deviation rate function and a verification argument
standard arguments as in the references show that it is a subsolution in the sense of
Definition 5.4.

This problem is simple enough that one can find a subsolution by inspection. In-
deed, with the choice V̄ (y) = ρ2(1−y1−y2)∨0 we have V̄ (0) = W (0) = ρ2, and direct
calculation gives DV̄ (y) = −ρ2(1, 1) and H(DV̄ (y)) = 0. The Dirichlet boundary
condition holds with equality. With regard to the Neumann boundary conditions the
concavity of H means that H(DV̄ (y)− a(0, 1)) ≥ 0 will not be true when a > 0, but
since

〈
(0, 1),−DV̄ (y)

〉
, 〈(0, 1), (0, 1)〉 , 〈(1,−1),−DV̄ (y)

〉
and 〈(1,−1), (1, 0)〉 are all

non-negative the boundary conditions hold. Thus it follows from the discussion in
Section 6 that a GDPR scheme derived from V̄ above will be asymptotically optimal.

Table 1 below shows the results of estimating the probabilities pn when λ = 1,
µ1 = µ2 = 4.5 for various values of n using a GDPR scheme derived from the
above generating function using ∆ = ln4.5. This value of ∆ was chosen to coincide
with the large deviation rate since then each level of the form {(q1, q2) : q1 + q2 = j}
corresponds to a splitting threshold. This choice gives good results although in
performance is not too sensitive in this regard, and changing ∆ by a factor of two
has a qualitatively small effect. Each estimate is based on a run of 20,000 samples.
The variances of the estimators are estimated in the standard manner, see [22]. The
theoretical value was obtained by solving the matrix equations obtained by doing a
one time step analysis.

Consider now the same tandem Jackson network but suppose that we are inter-
ested in estimating the probabilities

pn((1, 0)) = P(1,0) (Q1(τn) ∧ Q2(τn) ≥ n) ,

where τn .= inf {t : Q1(t) ∨ Q2(t) = 0 or Q1(t) ∧ Q2(t) ≥ n}. For this example we
will use the quasipotential to define the subsolution. It is shown in [18] that
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n 30 40 50
Theoretical Value 2.63× 10−18 1.03× 10−24 3.80× 10−31

Estimate 2.63× 10−18 1.06× 10−24 3.83× 10−31

Std. Err. 0.08× 10−18 0.04× 10−24 0.15× 10−31

95% C.I. [2.47, 2.79]× 10−18 [0.99, 1.14]× 10−24 [3.54, 4.13]× 10−31

Time Taken (s) 3 6 8

Table 1: Hitting Probabilities, Single Shared Buffer

lim
n→∞−1

n
log pn((1, 0)) = log ρ1 + log ρ2

.= γ.

To investigate the large deviations properties of these probabilities we rescale the
processes as in the last example.

It is well known (see [16]) that the queueing process (Q1(t), Q2(t)) has invariant
measure µ(q1, q2) = ρ−q1

1 ρ−q2
2 , and hence the rescaled process (Xn

1 (i), Xn
2 (i)) has

invariant measure µn(x1, x2) = ρ−nx1
1 ρ−nx2

2 for points (x1, x2) of the form (q1, q2)/n.
Using the relation between the quasipotential and the large deviation properties of
the stationary distribution, it follows that the quasipotential of (Xn

1 (i), Xn
2 (i)) is

UQP(x1, x2) = x1 log ρ1 + x2 log ρ2.

Deriving a generating function from this quasipotential in the manner discussed
in Section 6 gives the function

U(x1, x2) = ([1− x1] log ρ1 + [1− x2] log ρ2) ∨ 0. (7.3)

Since U(0, 0) = γ it follows that a GDPR scheme derived in this manner is asymp-
totically optimal.

Table 2 shows the results of estimating the probabilities pn when λ = 1, µ1 = 3
and µ2 = 2 for various values of n using a GDPR scheme derived using (7.3) with
∆ = ln6. Each estimate is based on a run of 20,000 samples.

n 10 20 30
Theoretical Value 9.64× 10−8 1.60× 10−15 2.64× 10−23

Estimate 9.70× 10−8 1.57× 10−15 2.64× 10−23

Std. Err. 0.16× 10−8 0.03× 10−15 0.06× 10−23

95% C.I. [9.39, 10.0]× 10−8 [1.51, 1.63]× 10−15 [2.53, 2.75]× 10−23

Time Taken (s) 3 12 26

Table 2: Hitting Probabilities, Separate Buffers

Finally, since many queueing models are non-Markovian we present an example
involving a non-Markovian process. Consider a tandem network whose arrival rates
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are modulated by an underlying process R(t) which takes values in the set {1, 2},
such that the times taken for the modulating process to switch states are independent
exponential random variables with rate γ(1) if R is in state 1 and γ(2) otherwise. Let
λ(1), µ1(1), µ2(1) and λ(2), µ1(2), µ2(2) be the arrival and service rates of the network
in the first and second states respectively. The notion of viscosity subsolution is the
same as that of the tandem Jackson network except that the Hamiltonian is given
by

H(p) = − logC∗(p),

C∗(p) is the largest eigenvalue of a matrix A(p) defined by

A(p)j,k =

{
Hj(p) λ(j)+µ1(j)+µ2(j)

λ(j)+µ1(j)+µ2(j)+γ(i)
j = k

γ(j)
λ(j)+µ1(j)+µ2(j)+γ(j) otherwise

,

and Hj(p) is equal to (7.2) with service rates corresponding to those of the Markov
modulated network in the jth state for j ∈ {1, 2} .

Consider again the single shared buffer problem. Let λ(1) = 1, µ1(1) = 3.5, µ2(1) =
2.5, γ(1) = 0.2 and λ(2) = 1, µ1(2) = 4.5, µ2(2) = 4.5, γ(2) = 0.5. Exactly as
in the case of the Jackson network the Neumann boundary conditions will hold,
and it can be shown by numerically evaluating the Hamiltonian that the function
V̄ (x1, x2) = 1.00029(1− x1 − x2) ∨ 0 is a viscosity subsolution and that V̄ (0, 0) is
equal to the large deviations rate of the problem. As above it follows that a GDPR
scheme derived from this generating function will be asymptotically optimal. Table
3 gives results for simulations using a GDPR scheme derived from V̄ by choosing
∆ = 2× 1.00029. Each estimate was derived using 20,000 runs.

n 30 40 50
Theoretical Value 6.36× 10−13 2.88× 10−17 1.30× 10−21

Estimate 6.36× 10−13 2.87× 10−17 1.29× 10−21

Std. Err. 0.18× 10−13 0.09× 10−17 0.05× 10−21

95% C.I. [6.00, 6.72]× 10−13 [2.69, 3.05]× 10−17 [1.20, 1.38]× 10−21

Time Taken (s) 1 2 2

Table 3: Hitting Probabilities, Non-Markovian Process

7.2 Estimating Stationary Measures

We now consider the problem of estimating stationary measures. Typically this is
done in one of two ways. Suppose that we have a process {X} with stationary
measure π, such that for all Borel C ⊂ D and all initial conditions x

lim
i→∞

Ex [I (Xi ∈ C)] = π(C). (7.4)
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It is well known that (7.4) holds under suitable mixing and stability conditions, see
for example [23]. When (7.4) does hold π(C) is often approximated by

Ex


 1

K2

K1+K2∑
i=K1+1

I (Xi ∈ C)


 , (7.5)

which is itself estimated using Monte Carlo simulation. It should be noted that
estimating the quantity (7.5) leads to a biased estimator for the stationary measure
π(C), however the length of the “burn-in” period K1 is chosen so that the effects
of the transient parts of the behavior of the process {X} can be ignored. This
approach to estimating stationary measures will be referred to as the occupation
measure method.

An alternative approach is the regenerative method. To simplify the exposition
we assume that the state space of the process {X} is discrete. It is possible to drop
this restriction, see [6] and the references therein for more details. Suppose that a
stationary measure exists as well as a positive recurrent state O. Then it is well
known, see for example [25], that for any C ⊂ D

π(C) =
EO [sO,C ]
EO [sO]

, (7.6)

where sO is the time of first return to the state O and sO,C is the amount of time
spent in C prior to the first return to O. Thus π(C) can be estimated by estimating
these expected values and taking their ratio. This estimator has two advantages.
Firstly it is nearly unbiased in that the estimator for the numerator is unbiased, while
relatively much more accurate estimates of the denominator are easy to obtain. The
second is that it does not require the calculation of any fundamental properties of
the process, such as the decay rate of the transient. In this method the point O is
often referred to as the regeneration point.

We now show how these two methods may be used in the context of rare event
simulation and the GDPR algorithm. Assume that we have a sequence of processes
{Xn} and a subset C ⊂ D, and wish to estimate the stationary measures πn(C).
Assume further that (7.4) and (7.6) hold for each n and that there exists O ∈ D,
positive recurrent for each n, such that O is an attracting point of the limiting
dynamics of {Xn}. Define J by (5.3) with the stopping set M equal to O, and
further assume that for all E ⊂ D such that E = E◦

lim
n→∞−1

n
logπn(E) = inf

y∈E
J (O, y). (7.7)

We first consider the problem of estimating πn(C) using the occupation measure
method. To apply this method one must find suitable values Kn

1 and Kn
2 such that

(7.5) is a sufficiently good approximation to πn(C) for each n. We start by assuming
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one can take Kn
2 = K for all n for some K � 1. This assumption is essentially

the same as one made in the original implementations of the RESTART and DPR
algorithms, [4] and [21]. In these papers it is implicitly assumed that Kn

1 can be
chosen to be equal to 0 for all n, however in many cases the transient behavior of the
process may take a considerable amount of time to decay. Some rigorous methods for
determining a suitable amount of burn-in are discussed in [17], however to produce
the results presented in this paper we used the following heuristic.

Consider the calculus of variations problem (7.7) and suppose that there exists
some trajectory φ∗(s) and terminal time T ∗ such that φ∗(0) = O, φ∗(T ∗) ∈ C and∫ T ∗
0 L(φ∗(s), φ̇∗(s))ds = infy∈C J (O, y). Intuitively this suggests that the process

requires a time of roughly nT ∗ for sufficient mixing to have occurred that the oc-
cupation measure of the set C is close to πn(C) and so we should choose a burn in
time of length nT for some T � T ∗. Once the times Kn

1 and Kn
2 have been specified

it remains to design a GDPR for estimating the quantities (7.5) using a suitable
subsolution to (7.7). Note that for each n we can write

Ex


 1

K2

Kn
1 +Kn

2∑
i=Kn

1 +1

I (Xi ∈ C)


 = Ex

[
τn∑
i=0

e−nFn(Xn
i )

]
,

where
τn = inf {i : (Xn

i , i/(Kn
1 + Kn

2 ) ∈ D × {1}}
and

Fn(y, i) = ∞I (y /∈ C or i/(Kn
1 + Kn

2 ) < (Kn
1 + 1)/(Kn

1 + Kn
2 )) .

Since Fn depends on n the form of this problem is not consistent with (5.1). However
by observing that ∞I (y /∈ C) ≤ Fn(y, i) ≤ ∞I (y /∈ C or i/(Kn

1 + Kn
2 ) < 1), and

since for these functions the corresponding limits coincide, it follows that the results
proved in the previous sections can still be applied.

Finally consider estimating πn(C) using the regenerative method. We assume
that the regeneration point is always chosen to be the point O described in (7.7).
We further assume that the quantities EO [sn

O] can be accurately estimated using
standard Monte Carlo simulation so the problem reduces to that of finding a good
GDPR scheme for estimating EO[sn

O,C ]. It is clear that this problem is of the form
(5.1) and it follows from the assumptions made above that the large deviations
properties of the expected values EO[sn

O,C ] are identical to those of the stationary
measures πn(C), and in particular that limn→∞− 1

n log[Esn
O,C] equals (7.7). Thus in

order to design a GDPR scheme it is again remains only to find a suitable subsolution
to (7.7).

Note that the assumption (7.7) has a particularly useful practical consequence,
which is that the large deviations decay rate for {πn(C)} coincides with the decay
rate for the probability of hitting C before the first return to O, after starting at O.
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In particular, the calculus of variations problems and corresponding HJB PDEs are
the same in both cases and so it follows that the same generating functions can be
used and that the asymptotic work-normalised relative errors will be identical. We
will now illustrate these ideas by considering two queueing problems.

Consider first the same stable tandem Jackson network as in Section 7.1, and
suppose we want to estimate

pn = π (Q1(t) + Q2(t) ≥ n) , (7.8)

where π denotes the stationary measure of (Q1(t), Q2(t)). It is easy to see that for
all n

pn = πn
({

(a, b) ∈ R
2 : x + y ≥ 1

})
,

where πn is the stationary measure of the rescaled process (7.1). Further it follows
from the discussion above that we can design GDPR schemes for both the occupation
and regenerative methods using the same generating function as was used in the
previous section for estimating the corresponding hitting probabilities, and that the
resulting GDPR scheme will again be asymptotically optimal. Numerical results
are presented in Tables 4 and 5 below. The regenerative estimator was made using
20, 000 runs and the regeneration point was chosen to be (0, 0). For the occupation
measure method K was chosen to be 20, 000 and the above heuristic argument
suggested a choice of 10n for Kn

1 . Due to the effects of correlation the variance of
the estimator based on the occupation measure method cannot be estimated in the
standard way. Instead the variance was estimated using the method proposed in
[24].

n 20 30 40
Theoretical Value 1.43× 10−12 6.16× 10−19 2.39× 10−25

Estimate 1.55× 10−12 6.39× 10−19 2.34× 10−25

Std. Err. 0.32× 10−12 1.54× 10−19 0.57× 10−25

95% C.I. [0.82, 2.28]× 10−12 [3.38, 9.41]× 10−19 [1.22, 3.46]× 10−25

Time Taken (s) 0.4 0.6 1

Table 4: Stationary Measures, Ergodic Method

n 20 30 40
Theoretical Value 1.43× 10−12 6.16× 10−19 2.39× 10−25

Estimate 1.37× 10−12 6.47× 10−19 2.40× 10−25

Std. Err. 0.08× 10−12 0.46× 10−19 0.19× 10−25

95% C.I. [1.21, 1.54]× 10−12 [5.56, 7.38]× 10−19 [2.03, 2.76]× 10−25

Time Taken (s) 0.7 1 2

Table 5: Stationary Measures, Regenerative Method
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We also revisit the non-Markovian model and consider again estimating the
stationary measures (7.8). Define the rescaled process

(Xn
1 (i), Xn

2 (i), Mn(i)) =
(

Q1(ti)
n

,
Q2(ti)

n
, M(ti)

)
,

where ti is defined in the same manner as before. It can be shown that for all n and
C ∈ D

pn =
απn (C × {1}) + βπn (C × {2})
απn (D × {1}) + βπn (D × {2})

where

α = (λ(1) + µ1(1) + µ2(1) + γ(1))−1 and β = (λ(2) + µ1(2) + µ2(2) + γ(2))−1 .

Tables 6 and 7 below show numerical results for estimating these probabilities.
The quantities πn (D × {1}) and πn (D × {2}) were estimated using standard Monte
Carlo methods and the quantities

πn (C × {1}) (7.9)

and
πn (C × {2}) (7.10)

were estimated using both the occupation measure and regenerative methods via
GDPR schemes derived using the same generating function and ∆ as in Section 7.1.
We first present data for simulating the stationary measure. In this case K was
chosen to be 20,000 and K1 was chosen to be equal to 50n. The estimates obtained
using the regenerative method were made using 20, 000 runs. The quantity (7.9)
was estimated by choosing the regeneration point to be ((0, 0), 1) and (7.10) was
estimated by choosing the regeneration point to be ((0, 0), 2).

n 20 30 40
Theoretical Value 4.91× 10−09 2.23× 10−13 1.01× 10−17

Estimate 5.10× 10−09 2.26× 10−13 0.82× 10−17

Std. Err. 1.63× 10−09 0.71× 10−13 0.27× 10−17

95% C.I. [1.89, 8.31]× 10−09 [0.87, 3.65]× 10−13 [0.29, 1.35]× 10−17

Time Taken (s) 1 1 2

Table 6: Stationary Measures, Non-Markovian Process, Ergodic Method

7.3 Rare Events for the Sample Mean

We conclude this section by considering the use of subsolutions to create GDPR
schemes for a finite time problem. Let X1, X2, . . . be a sequence of iid N(0, IN)
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n 20 30 40
Theoretical Value 4.91× 10−09 2.23× 10−13 1.01× 10−17

Estimate 4.92× 10−09 2.13× 10−13 0.94× 10−17

Std. Err. 0.23× 10−09 0.13× 10−13 0.06× 10−17

95% C.I. [4.47, 5.36]× 10−09 [1.89, 2.38]× 10−13 [0.82, 1.06]× 10−17

Time Taken (s) 1 2 2

Table 7: Stationary Measures, Non-Markovian Process, Regenerative Method

random variables where IN is the N -dimensional identity matrix and let Sn =
1
n

∑n
i=1 Xi. Suppose that we are interested in simulating the expected values

E


 ∑

m=1,...,M

en 〈ām,Sn〉




for some sequence of vectors ā1, . . . , āM ∈ R
d. For j ∈ {1, . . . , n} let Sn(j) =

1
n

∑j
i=1 Xi. Then given sequences xn, jn and x ∈ RN , t ∈ [0, 1] such that limn→∞ xn =

x and limn→∞ jn/n = t, it can be shown (see [10]) that

W (x, t) = inf
m=1,...,M

{
−〈ām, x〉 − (1 − t)

2
‖ām‖2

}
.

Further the HJB PDE corresponding to the calculus of variations problem that
describes the large deviations properties of this process is

Wt + H(DW ) = 0, t < 1 (7.11)

and the terminal condition

W (x, 1) = min
m=1,...,M

{− 〈ām, x〉} , (7.12)

where L(β) = ‖β‖2/2 and H(q) = infβ∈RN [〈q, β〉+ L(β)] = −‖q‖2/2. Note that this
problem can be put into the general framework by considering the time variable as
simply another state variable, rescaling time by 1/n and letting the stopping time
τn equal 1 for all n. A smooth function U will be a subsolution for this equation
if Ut + H(DU) ≥ 0 and if U(x, 1) ≤ −〈ām, x〉 for m = 1, . . . , M . Despite the fact
that Condition 5.1 part 2 is no longer true it is easy to show that the conclusions of
Theorem 5.5 still hold. It can be verified by inspection that any affine function of
the form

U(x, t) = −〈α, x〉+ γ − (1 − t)
‖α‖2

2
,

α, γ ∈ RN satisfies Ut + H(DU) ≥ 0. In particular, the functions Uām(x, t) =
−〈ām, x〉 − (1 − T ) ‖ām‖2 , m = 1, . . . , M , are viscosity solutions to the HJB
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PDE with terminal conditions W (x, 1) = −〈ām, x〉 respectively. Using the fact
that the pointwise minimum of a finite collection of viscosity solutions is again a
viscosity solution it follow that the function U(x, t) = infm=1,...,M Uām(x, t) is a
viscosity subsolution to the HJB PDE with terminal condition (7.12) such that
U(0, 0) = W (0, 0).

Thus we can look for a generating function of the form V̄ (x, t) = U(x, t) ∧ γ for
some suitable γ. The choice of γ = infm=1,...,M{−3

2 ‖ām‖2} leads to an asymptoti-
cally optimal GDPR scheme and indeed this is the largest choice of γ for which this
is true. Numerical results for a GDPR scheme derived using this choice of generating
function and ∆ = 0.5 with ā1 = (1, 0) and ā2 = (0, 1) are shown in Table 8 below.
Each estimate was derived using 20,000 runs.

n 40 60 80
Theoretical Value 9.70× 108 2.14× 1013 4.71× 1017

Estimate 9.60× 108 2.19× 1013 4.35× 1017

Std. Err. 0.47× 108 0.13× 1013 0.32× 1017

95% C.I. [8.68, 10.5]× 108 [1.94, 2.44]× 1013 [3.72, 4.97]× 1017

Time Taken (s) 1.1 1.6 2.1

Table 8: Rare Events for the Sample Mean

8 Conclusions

We have shown that a generalized version of the GDPR algorithm can be defined
which can be used to simulate a wide range of expected values. Further the generat-
ing function and subsolutions approach provides a rigorous and flexible framework
for the design and analysis of such algorithms. One interesting feature of the nu-
merical results presented is that although the RESTART and DPR algorithms have
traditionally been implemented for estimating stationary measures using the occupa-
tion measure method the results presented in this paper do not indicate a significant
superiority over the regenerative method. Given the relative simplicity in designing
and analyzing various aspects of the regenerative method (e.g., sample variance),
this method seems preferable.

There remain several topics for future research, in particular a theoretical com-
parison of the GDPR and standard splitting algorithms is required before the topic
of multi-level splitting can be said to fully understood. Further as there is much
interest in simulating rare events for diffusion processes a future goal is to formulate
a version of the GDPR algorithm for continuous time processes. Finally there is
much interest in processes whose limiting behavior has multiple attracting points.
The question of finding good importance functions in this case for either importance
sampling or multi-level splitting has yet to be addressed.
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9 Appendix

This section contains the proofs of Lemma 3.3, Theorem 4.3 and Theorem 4.4.

Proof of Lemma 3.3. We use the notation N τ
i , etc., as defined in the statement of

the GDPR algorithm, and assume that τ > 0, since otherwise the lemma is trivial.
Recall that we assume that τ is the first entry time of some set M . The second
result is obtained by summing the first one over l. We will prove the first display
by induction on i. Clearly the result holds for i = 0. Suppose the result has been
proved up to some i∗. We can write

eV (x0)Ex0


Nτ

i∗+1∑
m=1

f̄(X̄τ
i∗+1,m)1{

Lτ
i∗+1,m

=l
}



=
ρ(x0)∑
k=0

Lρ(x0)(k)eV (x0)Ex0,k


Nτ

i∗+1∑
m=1

f̄ (X̄τ
i∗+1,m)1{

Lτ
i∗+1,m

=l
}

 ,

where Ex0,k denotes expected value given X̄τ
0,1 = x0 and Lτ

0,1 = k. Note that

Ex0,k


Nτ

i∗+1∑
m=1

f̄(X̄τ
i∗+1,m)1{

Lτ
i∗+1,m

=l
}



= Ex0,k


Nτ

1∑
r=1

EX̄τ
1,r,Lτ

1,r


Nτ

i∗+1∑
m=1

f̄ (X̄τ
i∗+1,m)1{

Lτ
i∗+1,m

=l
}



 .

Thus the original quantity can be written as

ρ(x0)∑
k=0

Lρ(x0)(k)eV (x0)Ex0,k


Nτ

1∑
r=1

EX̄τ
1,r,Lτ

1,r


 Nτ

i∗∑
m=1

f̄(X̄τ
i∗,m)1{

Lτ
i∗+1,m

=l
}



 . (9.1)

Conditioning on the value of y = Y0,1 as it appears in the pseudo code naturally
partitions the problem into three cases. In the first case ρ(y) = ρ(x0). In this case
we have N τ

1 = 1, X̄τ
1,1 = y, and Lτ

1,1 = Lτ
0,1 has distribution Lρ(x0) = Lρ(y). The

conditional version of (9.1) can be written as

ρ(y)∑
k=0

Lρ(y)(k)eV (x0)Ey,k


 Nτ

i∗∑
m=1

f̄(X̄τ
i∗,m)1{

Lτ
i∗,m

=l
}

 .

In the second case ρ(y) < ρ(x0). In this case the particle is killed if and only if
Lτ

0,1 > ρ(y). If Lτ
0,1 ≤ ρ(y) then N τ

1 = 1 and Lτ
1,1 = Lτ

0,1. The conditioned version of
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(9.1) is then

ρ(y)∑
k=0

Lρ(x0)(k)eV (x0)Ey,k


Nτ

i∗∑
j=m

f̄(X̄τ
i∗,m)1{

Lτ
i∗,m

=l
}



=
ρ(y)∑
k=0

Lρ(x0)(k)
Lρ(y)(k)

Lρ(y)(k)eV (x0)Ey,k


 Nτ

i∗∑
m=1

f̄(X̄τ
i∗,m)1{

Lτ
i∗,m

=l
}



= eVρ(y)−Vρ(x0)

ρ(y)∑
k=0

Lρ(y)(k)eV (x0)Ey,k


Nτ

i∗∑
m=1

f̄(X̄τ
i∗,m)1{

Lτ
i∗,m

=l
}

 .

Finally there is the case when ρ(y) > ρ(x0). Here there is the possibility that
new particles are created (i.e., N τ

1 > 1), though in all cases we have X̄τ
1,r = y. When

new particles are created, the associated thresholds are determined according to the
measure Qj,k, and so by the assumption of unbiasedness on these measures (9.1)
takes the form

 ρ(y)∑
j=ρ(x0)+1

eVj − eVj−1

eVρ(x0)
eV (x0)Ey,j


 Nτ

i∗∑
m=1

f̄(X̄τ
i∗,m)1{

Lτ
i∗,m

=l
}



+
ρ(x0)∑
k=0

Lρ(x0)(k)eV (x0)Ey,k


 Nτ

i∗∑
m=1

f̄(X̄τ
i∗,m)1{

Lτ
i∗ ,m

=l
}





=
ρ(y)∑
j=0

eVj − eVj−1

eVρ(x0)
eV (x0)Ey,j


 Nτ

i∗∑
m=1

f̄(X̄τ
i∗,m)1{

Lτ
i∗,m

=l
}



= eVρ(y)−Vρ(x0)

ρ(y)∑
j=0

Lρ(y)(j)e
V (x0)Ey,j


 Nτ

i∗∑
m=1

f̄(X̄τ
i∗,m)1{

Lτ
i∗,m

=l
}

 .

It follows that

eV (x0)Ex0


Nτ

i∗+1∑
j=1

f̄(X̄τ
i∗+1,j)1{Lτ

i∗+1,m
=l
}



= eV (x0)Ex0


e

Vρ(X̄τ
1,1)−Vρ(X̄τ

0,1)

ρ(X̄τ
1,1)∑

j=0

Lρ(X̄τ
1,1)(j)EX̄τ

1,1,j


 Nτ

i∗∑
m=1

f̄(X̄τ
i∗,m)1{

Lτ
i∗,m

=l
}



 .

Conditioning again on X̄τ
1,1, using that X1 has the same distribution as X̄τ

1,1 given
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τ ≥ 1 and applying the induction hypothesis gives

eV (x0)Ex0


Nτ

i∗+1∑
j=1

f̄(X̄τ
i∗+1,j)1{Lτ

i∗+1,m
=l
}



= eV (x0)Ex0


e

Vρ(X̄τ
1,1)−Vρ(X̄τ

0,1)EX̄τ
1,1


Nτ

i∗∑
m=1

f̄(X̄τ
i∗,m)1{

Lτ
i∗,m

=l
}





= eV (x0)Ex0


eVρ(X1)−Vρ(X0)EX1


Nτ

i∗∑
m=1

f̄(X̄τ
i∗,m)1{

Lτ
i∗,m

=l
}





= Ex0


eVρ(X1)EX1


 Nτ

i∗∑
m=1

f̄(X̄τ
i∗,m)1{

Lτ
i∗,m

=l
}





= Ex0

[
EX1

[
f̄(Xi∗)(eVl − eVl−1)1{ρ(Xi∗)≥l}1{τ≥i∗}

]]
= Ex0

[
f̄(Xi∗+1)(eVl − eVl−1)1{ρ(Xi∗+1)≥l}1{τ≥i∗+1}

]
.

Proof of Theorem 4.3. Recall that τ is the first entry time of some closed set
M ⊂ D. First consider the case where f̄ is bounded and there is a T < ∞ such
that τ ≤ T a.s. Let W (x) = e−V (x)Ex[(ŝ(f̄))2] and let Z(x, j; k), k = 0, . . . denote
iid sequences of random variables with the same distribution as ŝ(f̄), conditioned
on X̄τ

0,1 = x and Lτ
0,1 = j. Since f̄ and the time interval are bounded these random

variables are also bounded.
The proof is based on finding a recursive equation for W . If x0 /∈ M then there

are three contributions to ŝ(f̄) depending on the killing and/or splitting that takes
place over the next time step. The first is due simply to the current state of the
particle and is always present. The second is due to future contributions if the
particle stays above the support threshold, and the third occurs if new particles
are generated. To account for thresholds of both the existing particles and those
which might be generated, let Q̄j,k

l be random variables equal in distribution to
Qj,k + 1{L≤k}eL, where el denotes the lth unit vector and L is a random variable
independent of Qj,k and with distribution Lj. Using the splitting distributions for
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Qj,k
l given above,

W (x0) = e−V (x0)Ex0

[(
eV (x0)f̄(x0) + 1{Lτ

0,1≤ρ(X̄τ
1,1)}eV (X̄τ

0,1)−V (X̄τ
1,1)Z(X̄τ

1,1, L
τ
0,1; 0)

+1{ρ(X̄τ
0,1)<ρ(X̄τ

1,1)}




ρ(X̄τ
1,1)∑

j=ρ(X̄τ
0,1)+1

Q
ρ(X̄τ

0,1),ρ(X̄τ
1,1)

j ∑
m=1

eV (X̄τ
0,1)−V (X̄τ

1,1)Z(X̄τ
1,1, j; m)






2


= eV (x0)f̄(x0)2 + 2f̄(x0)Ex0




J∑
j=0

Q̄
ρ(X̄τ

0,1),ρ(X̄τ
1,1)

j ∑
m=1

eV (X̄τ
0,1)−V (X̄τ

1,1)Z(X̄τ
1,1, j; m)




+e−V (x0)Ex0






J∑
j=0

Q̄
ρ(X̄τ

0,1),ρ(X̄τ
1,1)

j ∑
m=1

eV (X̄τ
0,1)−V (X̄τ

1,1)Z(X̄τ
1,1, j; m)




2 
 ,

If x0 ∈ M then W (x0) = e−V (x0)
(
eV (x0)f̄(x0)

)2
= e−V (x0)f(x0)2.

We now use the following facts: L0,1 has distribution Lρ(X0); X̄τ
1,1 has the same

distribution (conditioned on X̄τ
0,1 = X0 = x0) as X1; by unbiasedness [see (3.2) and

(3.3)] and the definition of Q̄j,k
l , for all j, k, l

EQ̄
j,k
l eVj−Vk = Lk(l); (9.2)

and that the future evolution of the algorithm is independent of the Q̄k,l
j . Together

with the last display, these give

W (x0) = eV (x0)f̄(x0)2 + 2f̄(x0)Ex0


ρ(X1)∑

j=0

Lρ(X1)(j)EX1,j[ŝ(f̄)]


 (9.3)

+eV (x0)Ex0


 J∑

j,k=1

e−2V (X1)Q̄
ρ(X0),ρ(X1)
j Q̄

ρ(X0),ρ(X1)
k EX1,j[ŝ(f̄)]EX1,k[ŝ(f̄)]




+eV (x0)Ex0


 J∑

j=1

e
−2V (X1)
j Q̄

ρ(X0),ρ(X1)
j

(
EX1,j

[(
ŝ(f̄)

)2]− (EX1,j[ŝ(f̄)]
)2) .

We examine the various terms separately. First note that given a generic starting
point x the definition of the algorithm dictates that Lτ

0,1 will have distribution Lρ(x),
and so by Theorem 3.2

2f̄(x0)Ex0


ρ(X1)∑

j=0

Lρ(X1)(j)EX1,j[ŝ(f̄)]


 = Ex0

[
2f̄(x0)EX1

[
τ∑

k=0

f(Xk)

]]
. (9.4)
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Again using (9.2),

eV (x0)Ex0


 J∑

j=0

e−2V (X1)Q̄
ρ(X0),ρ(X1)
j EX1,j

[(
ŝ(f̄)

)2]

= Ex0


e−V (X1)

J∑
j=0

eV (X0)−V (X1)Q̄
ρ(X0),ρ(X1)
j EX1,j

[(
ŝ(f̄)

)2]

= Ex0


e−V (X1)

J∑
j=0

Lρ(X1)(j)EX1,j

[(
ŝ(f̄)

)2]
= Ex0 [W (X1)] . (9.5)

This leaves only the quantity

e−V (x0)Ex0




 J∑

j=0

J∑
l=0

e2V (X0)−2V (X1)Q̄
ρ(X0),ρ(X1)
j Q̄

ρ(X0),ρ(X1)
l EX1,j

[
ŝ(f̄)

]
EX1,l

[
ŝ(f̄)

]



−e−V (x0)Ex0




 J∑

j=0

e2V (X0)−2V (X1)Q̄
ρ(X0),ρ(X1)
j

(
EX1,j

[
ŝ(f̄)

])2

 .

The terms with both l and j below ρ(X0) contribute nothing to this expression, since
Q̄

ρ(X0),ρ(X1)
j is then either 0 or 1. We can thus drop these terms, and decompose the

double sum as
ρ(X1)∑

j=ρ(X0)+1

ρ(X1)∑
l=ρ(X0)+1

+2
ρ(X0)∑
j=1

ρ(X1)∑
l=ρ(X0)+1

.

If (Y1, . . . , Ym) has multinomial distribution M(N, p1, . . . , pm) then we have the mo-
ments

EYi = Npi, EY 2
i = (N 2 − N )p2

i + Npi, EYiYj = (N 2 − N )pipj, i �= j,

and so straightforward calculation together with the definitions (3.2) give

e−V (x0)Ex0


1{ρ(X1)>ρ(X0)}e

2V (X0)−2V (X1)
[
B2 − B

]  ρ(X1)∑
j=ρ(X0)+1

Lρ(X0),ρ(X1)(j)EX1,j

[
ŝ(f̄)

]
2


+2e−V (x0)Ex0


1{ρ(X1)>ρ(X0)}


ρ(X0)∑

j=1

Lρ(X1)(j)EX1,j

[
ŝ(f̄)

]

 ρ(X1)∑

l=ρ(X0)+1

Lρ(X1)(l)EX1,l

[
ŝ(f̄)

]

 ,

where B is a random variable equal to �(eVρ(X1) − eVρ(X0))/eVρ(X0)� with conditional
probability {(eVρ(X1) − eVρ(X0))/eVρ(X0)} and �(eVρ(X1) − eVρ(X0))/eVρ(X0)� otherwise.
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We use that the conditional expected value of B2−B is bounded above by [(eVρ(X1)−
eVρ(X0))/eVρ(X0) ]2, again the definition (3.2), and the non-negativity of f to get the
following upper bound on the last display:

e−V (x0)Ex0


1{ρ(X1)>ρ(X0)}


ρ(X1)∑

j=1

Lρ(X1)(j)EX1,j

[
ŝ(f̄)

]
2
 . (9.6)

We now combine (9.3), (9.4), (9.5) and (9.6) to get that for x0 /∈ M

W (x0) ≤ e−V (x0)f(x0)2 + 2e−V (x0)Ex0

[
f(x0)EX1

[
τ∑

k=0

f(Xk)

]]

+e−V (x0)Ex0


1{ρ(X1)>ρ(X0)}EX1

[
τ∑

k=0

f(Xk)

]2

+ Ex0 [W (X1)] .

Since all functions involved are bounded it follows that the process

Σi
.= W (Xi∧τ) +

i∧τ∑
j=1


e−V (Xj−1)

(
f(Xj−1) + EXj

[
τ∑

k=0

f(Xk)

])2



defined for i ∈ {0, . . . , T} is a submartingale. Thus, using that W (XT∧τ) = e−V (Xτ )f(Xτ )2,

e−V (x0)Ex0[(ŝ(f̄))2] = W (x0)
= Σ0

≤ Ex0 [ΣT ]

= Ex0


 τ∑

i=1

e−V (Xi−1)

(
f(Xi−1) + EXi

[
τ∑

k=0

f(Xk)

])2

 .

We next remove the restrictions on the stopping time τ . We add time as a state
variable [i.e., work with the process (Xi, i)], and consider the analogous estimation
problem where the stopping set is M × {T} (i.e., we stop if either Xi enters M or
i = T ), and with fT (y, i) = f(y) and f̄T (y, i) = fT (y, i)e−V (y). One can then use
ŝ(f̄T ) to denote an unbiased estimator for E(x0,0)

[∑τ∧M
i=0 fT (Xi, i)

]
and observe that

the distribution of this estimator will be equal to the distribution of the estimator
s(f̄) in the case that the corresponding algorithm is forcibly terminated at time T .
Thus ŝ(f̄T ) = eV (x0)

∑T
i=0

∫
D f̄(y)δ̄X̄τ

i
(dy) and ŝ(f̄T ) ↑ ŝ(f̄) a.s. By the MCT

E(x0,0)

[
ŝ(f̄T )

]→ Ex0

[
ŝ(f̄)

]
, E(x0,0)

[
(ŝ(f̄T ))2

]→ Ex0

[
(ŝ(f̄))2

]
and for any i

E(xi,i)

[
ŝ(f̄T )

]→ Exi

[
ŝ(f̄)

]
.
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Applying the MCT for a final time in the representation for E(x0,0)[(ŝ(f̄T ))2] gives
the desired result. Lastly one must remove the assumption that f (or f̄) is bounded,
but this follows again by the MCT. Thus (4.1) follows.

Proof of Theorem 4.4. We start with (9.3), and use (9.5) and that the remaining
terms are non-negative to get

W (x0) ≥ eV (x0)f̄(x0)2 + Ex0 [W (X1)] .

The result follows by arguing in the same way as in the proof of Theorem 4.3 using
the supermartingale

Σi
.= W (Xi∧τ ) +

i∧τ∑
j=1

{
e−V (Xj−1)f(Xj−1)2

}
.
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